
Abstract  ­  Intel Ethernet Flow Director is an advanced
network interface card (NIC) technology. It provides the benefits
of parallel receive processing in multiprocessing environments
and can automatically steer incoming network data to the same
core on which its application process resides. However, our
analysis and experiments show that Flow Director cannot
guarantee in-order packet delivery in multiprocessing
environments. Packet reordering causes various negative
impacts. E.g., TCP performs poorly with severe packet
reordering. In this paper, we use a simplified model to analyze
why Flow Director can cause packet reordering. Our
experiments verify our analysis.

Index Terms – Packet Reordering, Flow Director, TCP, High
Performance Networking. 

1. Introduction 

Computing is now shifting towards multiprocessing (e.g.,
CMP, SMP, and UNMA). The fundamental goal of
multiprocessing is improved performance through the
introduction of additional hardware threads, CPUs, or cores
(all of which will be referred to as “cores” for simplicity). The
emergence of multiprocessing has brought both opportunities
and challenges for TCP/IP performance optimization in such
environments. Modern network stacks can exploit parallel
cores to allow either message-based parallelism or connection-
based parallelism as a means of enhancing performance [1].
While existing OSes exploit parallelism by allowing multiple
threads to carry out network operations concurrently in the
kernel, supporting this parallelism carries significant costs,
particularly in the context of contention for shared resources,
software synchronization, and poor cache efficiencies [1][2].
Investigations regarding processor affinity [3][4][5] indicate
that the coordinated affinity scheduling of protocol processing
and network applications on the same target cores can
significantly reduce contention for shared resources, minimize
software synchronization overheads, and enhance cache
efficiency.

Coordinated affinity scheduling of protocol processing
and network applications on the same target cores has the
following goals: (1) Interrupt affinity: Network interrupts of
the same type should be directed to a single core.
Redistributing network interrupts in either a random or round-
robin fashion to different cores has undesirable side effects
[4]. (2) Flow affinity: Packets belonging to a specific flow
should be processed by the same core. Flow affinity is
especially important for TCP. TCP is a connection-oriented
protocol, and it has a large and frequently accessed state that
must be shared and protected when packets from the same
connection are processed. Ensuring that all packets in a TCP
flow are processed by a single core reduces contention for
shared resources, minimizes software synchronization, and

enhances cache efficiency. (3) Network data affinity:
Incoming network data should be steered to the same core on
which its application process resides. This is becoming more
important with the advent of Direct Cache Access (DCA) [6].
Network data affinity maximizes cache efficiency and reduces
core-to-core synchronization. In a multicore system, the
function of network data steering is executed by directing the
corresponding network interrupts to a specific core (or cores).

Receive Side Scaling (RSS) [7] is a NIC technology. It
supports multiple receive queues and integrates a hashing
function in the NIC. The NIC computes a hash value for each
incoming packet. Based on hash values, NIC assigns packets
of the same data flow to a single queue and evenly distributes
traffic flows across queues. With Message Signal Interrupt
(MSI/MSI-X) [8] support, each receive queue is assigned a
dedicated interrupt and RSS steers interrupts on a per-queue
basis. RSS provides the benefits of parallel receive processing
in multiprocessing environments. Operating systems like
Windows, Solaris, Linux, and FreeBSD now support interrupt
affinity. When an RSS receive queue (or interrupt) is tied to a
specific core, packets from the same flow are steered to that
core (Flow pinning [9]). This ensures flow affinity on most
OSes, with Linux being the major exception. However, RSS
has a limitation: it cannot steer incoming network data to the
same core where its application process resides. The reason is
simple: the existing RSS-enabled NICs do not maintain the
relationship in the NIC:

 Traffic Flows → Network applications → Cores
Since network applications run on cores, the most critical
relationship is simply:

Traffic Flows → Cores (Applications)
Unfortunately, RSS does not support such capability. This is
symptomatic of a broader disconnect between existing
software architecture and multicore hardware. With OSes like
Windows and Linux, if an application is running on one core,
while RSS has scheduled received traffic to be processed on a
different core, poor cache efficiency and significant core-to-
core synchronization overheads will result. The overall system
efficiency may be severely degraded. To remedy the RSS
limitation, the Intel Ethernet Flow Director technology [10]
has been introduced. The basic idea is simple: Flow Director
maintains the relationship “Traffic Flows → Cores
(Applications)” in the NIC. OSes are correspondingly
enhanced to support such capability. Flow Director not only
provides the benefits of parallel receive processing in
multiprocessing environments, it also can automatically steer
packets of a specific data flow to the same core, where they
will be protocol-processed and finally consumed by the
application. However, our analysis and experiments show that
Flow Director cannot guarantee in-order packet delivery in

Why Does Flow Director Cause Packet Reordering? 
 

Wenji Wu, Phil DeMar, Matt Crawford 
Fermilab, P.O. Box 500, Batavia, IL 60510 

This Manuscript is submitted to IEEE Communication Letters 

multiprocessing environments. TCP performance suffers in the
event of severe packet reordering. In this paper, we use a
simplified model to analyze why Flow Director can cause
packet reordering. Our experiments verify our analysis.

2. Why does Flow Director Cause Packet Reordering? 

Intel Ethernet Flow Director [10] is a NIC technology. It
supports multiple receive queues in the NIC, up to the number
of cores in the system. With MSI/MSI-X and Flow-Pinning
support, each receive queue has a dedicated interrupt and is
tied to a specific core; each core in the system is assigned a
specific receive queue. The NIC device driver allocates and
maintains a ring buffer in system memory for each receive
queue. For packet reception, a ring buffer must be initialized
and pre-allocated with empty packet buffers that have been
memory-mapped into address space accessible by the NIC
over the system I/O bus. The ring buffer size is device and
driver-dependent. For Flow-Director-steering traffic, Flow
Director maintains a “Traffic Flow → Core” table with a
single entry per flow. Each entry tracks the receive queue
(core) to which a flow should be assigned. Entries within the
“Traffic Flow → Core” table are updated by outgoing packets.
To support Flow Director, OS must be multiple TX queue
capable [11]. Each core in the system is assigned a specific
transmit queue. Outgoing traffic generated on a specific core
is transmitted via its corresponding transmit queue. For an
outgoing transport-layer packet, the OS records a processing
core ID and pass it to the NIC to update the corresponding
entry in the table. Flow Director makes use of the 5-tuple
{src_addr, dst_addr, protocol, src_port, dst_port} in the
receive direction to specify a flow. Therefore, for an outgoing
packet with the header {(src_addr: x), (dst_addr: y),
(protocol: z), (src_port: p), (dst_port: q)}, its corresponding
flow entry in the table is identified as {(src_addr: y),
(dst_addr: x), (protocol: z), (src_port: q), (dst_port: p)}.

Fig. 1 illustrates packet receive-processing for transport-
layer packets with Flow Director. (1) When incoming packets
arrive, the hash function is applied to the header to produce a
hash result. Based on the hash result, the NIC identifies the
core and hence, the associated receive queue. (2) The NIC
assigns the incoming packets to the corresponding receive
queues. (3) The NIC deposits via direct memory access
(DMA) the received packets into the corresponding ring

buffers in system memory. (4) The NIC sends interrupts to the
cores associated with the non-empty queues. Subsequently, the
cores respond to the network interrupts and process the
received packets up through the network stack from the
corresponding ring buffers one by one. As for non-Flow-
Director-steering traffic, please refer to [10] for more details.

Flow Director not only provides the benefits of parallel
receive processing in multiprocessing environments, it also
can automatically steer packets of a data flow to the same
core, where they will be protocol-processed and finally
consumed by the application. However, our analysis shows
that Flow Director cannot guarantee in-order packet delivery
in multiprocessing environments. TCP performs poorly with
severe packet reordering [12]. In the following section, we use
a simplified model to
analyze why Flow
Director cannot
guarantee in-order packet
delivery.

As shown in Fig. 2,
at time

€

T −ε , Flow 1’s
flow entry maps to Core
0 in the “Traffic Flow →
Core” table. At this
instant, packet S of Flow
1 arrives; based on the “Traffic Flow → Core” table, it is
assigned to Core 0. At time

€

T , due to process migration, Flow
1’s flow entry is updated and maps to Core 1. At

€

T +ε , Packet
S+1 of Flow 1 arrives and is assigned to the new core, namely
Core 1. As described above, after assigning received packets
to the corresponding receive queues, NIC copies them into
system memory via DMA, and fires network interrupts, if
necessary. When a core responds to a network interrupt, it
processes received packets up through the network stack from
the corresponding ring buffer one by one. In our case, Core 0
processes packet S up through the network stack from Ring
Buffer 0, and Core 1 services packet S+1 from Ring Buffer 1.
Let

€

Tservice (S) and

€

Tservice (S +1) be the times at which the
network stack starts to service packets S and S+1,
respectively. If

€

Tservice (S) >Tservice (S +1) , the network stack
would receive packet S+1 earlier than packet S, resulting in
packet reordering. Let D be the ring buffer size and let the
network stack’s packet service rate be

€

Rservice (packets per
second). Assume there are n packets ahead of S in Ring Buffer
0 and m packets ahead of S+1 in Ring Buffer 1. Then:

€

Tservice (S) =T −ε + n /Rservice (1)

€

Tservice (S +1) =T +ε +m /Rservice (2)
If

€

ε is small and

€

n > m , the condition of

€

Tservice (S) >Tservice (S +1) would easily hold and lead to packet
reordering. Since the ring buffer size is

€

D, the worst case is

€

n = D −1 and

€

m = 0:

€

Tservice (S) =T −ε + (D −1) /Rservice (3)

€

Tservice (S +1) =T +ε (4)
The ring buffer size D is a design parameter for the NIC

and driver. For example, the Myricom 10Gb NIC is 512, and
Intel’s 1Gb NIC is 256.

 
Fig. 1 Flow Director Mechanism 

 
Fig. 2 A Simplified Model for 
Packet Reordering Analysis 

In a multicore system, a general-purpose OS scheduler
tries to use all core resources in parallel as much as possible,
distributing and adjusting the load among the cores. Process
migration across cores occurs frequently. Flow Director can
easily cause packet reordering in these conditions.

To  validate  our  analysis,  we  ran  data  transmission 
experiments  over  an  isolated  network.  A  sender  was 
directly connected to a receiver via a physical 10Gbps link. 
The sender and receiver’s detailed features were:  

Sender: Dell R‐805. CPU: two Quad Core AMD Opteron 
2346HE,  1.8GHz. NIC: Myricom 10Gbps Ethernet NIC. OS: 
Linux 2.6.28.  

Receiver:  SuperMicro  Server.  CPU:  two  Intel  Xeon 
CPUs, 2.66 GHz, Family 6, Model 15. NIC: Intel X520 Server 
Adapter  with  Flow  Director  enabled  (configured  with 
suggested  default  parameters  [11]:  FdirMode=1, 
AtrSampleRate=20), 10Gbps. OS: Linux 2.6.34, Multiple TX 
Queue Capable. 

In our experiments, iperf [13] is used to send n parallel 
TCP streams from sender to receiver for 100 seconds. We 
ran “iperf –s” in the receiver. Linux was configured to run in
multicore peak performance mode [14]. As a consequence, the
scheduler tries to use all core resources in parallel as much as
possible, distributing the load equally among the cores. Iperf is
a multi-threaded network application. With multiple parallel
TCP data streams, a dedicated child thread is spawned and
assigned to handle each
stream. As a result, iperf
threads may migrate across
cores. The receiver was
instrumented to record out-
of-order packets, and we
calculated relevant packet
reordering ratios. The
experiment results, with a
95% confidence interval,
are shown in Table 1.

The degree of packet reordering is significant. At n=200,
packet reordering  ratio  reaches  as  high  as  0.897%.  The
experiment results validated our analysis. When the scheduler
tries to use all core resources in parallel as much as possible,

distributing the load equally among the cores, it will lead to
frequent process migration. As our analysis suggested, the
Flow Director mechanism would cause packet reordering
when process migration occurs. In addition, we ran tcpdump 
to record a single stream’s packet  trace at  the receiver @
n=200.  The  packet  trace  analysis  in  Fig.  3  (using  tcptrace 
and xplot  [15])  clearly  shows  the occurrence of duplicate 
ACKs,  SACKs,  and  data  retransmissions  due  to  packet 
reordering.  

We then ran “taskset 0x01 iperf –s”  in the receiver to 
pin iperf to core 0 and repeated the above experiments. No
packet reordering was discovered. This is because when iperf 
is  pinned  to  a  specific  core,  its  child  threads  are  also 
pinned to that core. There will be no process migration in 
this case. In these conditions, Flow Director does not cause 
packet reordering. 

3. Conclusion 

In this paper, we use a simplified model to analyze why
Flow Director can cause packet reordering in multiprocessing
environments. Our experiments validate our analysis. The
contributions of this paper are twofold. First, we show Intel
Ethernet Flow Director cannot guarantee in-order packet
delivery in multiprocessing environments. Second, we develop
a simplified model to analyze why Flow Director causes
packet reordering.

REFERENCE
  
[1] P. Willmann et al., “An Evaluation of Network Stack Parallelization

Strategies in Modern Operating Systems,” USENIX ATC, 2006.
[2] J. Hurwitz et al., “End-to-end performance of 10-gigabit etherent on

commodity systems,” IEEE Micro, Vol. 24, No. 1, 2004, pp. 10-22.
[3] J. Salehi et al., “The effectiveness of affinity-based scheduling in

multiprocessor networking,” IEEE/ACM Transactions on
Networking, Volume 4, Issue 4, 1996 Page(s): 516-530.

[4] A. Foong et al., “An in-depth analysis of the impact of processor
affinity on network performance,” In Proc. IEEE International
Conference on Networks, 2004.

[5] J. Hye-Churn et al., “MiAMI: Multi-Core Aware Processor Affinity
for TCP/IP over Multiple Network Interfaces,” In Proc. IEEE
Symposium on High Performance Interconnects, 2009.

[6] R. Huggahalli et al., “Direct Cache Access for High Bandwidth
Network I/O,” In Proc. 32nd Annual International Symposium on
Computer Architecture, 2005.

[7] www.microsoft.com, Receive-Side Scaling Enhancements in
Windows Server, 2008.

[8] PCI Express System Architecture: PC System Architecture Series,
Addison-Wesley Professional, 2003, ISBN-10: 0321156307.

[9] www.intel.com, Supra-linear Packet Processing Performance with
Intel Multi-core, 2006.

[10] Intel 82599 10GbE Controller Datasheet, 2009.
[11] www.intel.com, IXGBE device driver README.
[12] W. Wu et al., “Sorting reordered packets with interrupt coalescing,”

computer network, Volume 53, Issue 15, 2009, pages: 2646-2662.
[13] http://dast.nlanr.net/Projects/Iperf/
[14] www.kernel.org
[15] www.tcptrace.org

n Reordering Ratio
40 0.498% ± 0.067%

100 0.705% ± 0.042%
200 0.897% ± 0.038%

500 0.635% ± 0.154%

1000 0.409% ± 0.009%
2000 0.129% ± 0.003%
Table 1 Experiment Results 

Fig.3 Packet Trace Analysis (@n=200)

 

